Algorithmes temporels rapides de type point fixe pour la séparation aveugle de mélanges convolutifs Time-domain fast fixed-point algorithms for blind separation of convolutive mixtures

نویسندگان

  • Johan THOMAS
  • Yannick DEVILLE
  • Shahram HOSSEINI
چکیده

This paper presents new blind separation methods for Moving Average (MA) convolutive mixtures of independent MA processes. They consist of time-domain extensions of the FastICA algorithms developed by Hyvärinen and Oja for instantaneous mixtures. They perform a convolutive sphering in order to use parameter-free fast fixed-point algorithms associated with kurtotic or negentropic nongaussianity criteria for estimating the source innovation processes. We prove the relevance of this approach by mapping the mixtures into linear instantaneous ones. Test results are presented for artificial colored signals and speech

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point algorithms for convolutive blind source separation based on non-gaussianity maximization Algorithmes à point xe pour séparation aveugle de sources convolutive fondée sur la maximisation de non-gaussianité

This paper presents a new approach to the problem of blind separation of independent components in the case of MA convolutive mixtures of MA processes. It consists of an extension of the well-known Fast-ICA algorithm developed by Hyvärinen and Oja for instantaneous mixtures. We introduce a new type of sphering (convolutive sphering) that allows the use of non-gaussianity criteria and associated...

متن کامل

A tractable framework for estimating and combining spectral source models for audio source separation

The underdetermined blind audio source separation (BSS) problem is often addressed in the time-frequency (TF) domain assuming that each TF point is modeled as an independent random variable with sparse distribution. On the other hand, methods based on structured spectral model, such as the Spectral Gaussian Scale Mixture Models (Spectral-GSMMs) or Spectral Nonnegative Matrix Factorization model...

متن کامل

Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation Factorisation en matrices à coefficients positifs de données multicanal convolutives pour la séparation de sources audio

We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. We work in the Short-Time Fourier Transform (STFT) domain, where convolution is routinely approximated as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired from nonnegativ...

متن کامل

A novel scaling scheme for fast Hartley transform

This paper presents some results on fixed-point error analysis of the fast Hartley transform algorithms. A novel scheme for preventing overflow is considered in the analysis. It is proved that error performance, defined based on the signal-to-noise ratio, can be improved for both the decimation-in-frequency and the decimation-in-time fast Hartley transform algorithms. Zusammenfassung . Dieser A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007